

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

TRAJECTORY OPTIMIZATION FOR HELICOPTER
UNMANNED AERIAL VEHICLES (UAVs)

by

Benjamin Thomas Gatzke

June 2010

 Thesis Advisor: Wei Kang
 Second Reader: Hong Zhou

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
 Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs)
6. AUTHOR(S) Benjamin Thomas Gatzke

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis explores the numerical methods and software development for optimal trajectories of a specific model of
Helicopter Unmanned Aerial Vehicle (UAV) in an obstacle-rich environment. This particular model is adopted from the
UAV Laboratory of the National University of Singapore who built and simulated flights for an X-Cell 60 small–scale
UAV Helicopter. The code, which allowed the team to simulate flights, is a complex system of non-linear differential
equations—15 state variables and four control variables—used to maneuver the state trajectories. This non-linear
model is incorporated into a separate optimization algorithm code, which allows the user to set initial and final time
conditions together with various constraints, and, using the same variable scheme, optimize a trajectory. The optimal
trajectory is defined by using a cost function—the performance measure—and the system is subject to a set of
constraints (such as mechanical limitations and physical three-dimensional obstacles). Simulations conclude that
solutions are readily obtained; however, it is still very difficult to derive trajectories that are truly optimal, and our work
calls for more future research in computational programs for optimal trajectory planning. All simulations in this thesis
are modeled using the MATLAB program.

15. NUMBER OF
PAGES

77

14. SUBJECT TERMS
Nonlinear Model, Trajectory Optimization, State and Control Variables, Cost Function

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

TRAJECTORY OPTIMIZATION FOR HELICOPTER UNMANNED AERIAL
VEHICLES (UAVs)

Benjamin T. Gatzke

Major, United States Army
B.S., United States Military Academy at West Point, May 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2010

Author: Benjamin Thomas Gatzke

Approved by: Wei Kang
Thesis Advisor

Hong Zhou
Second Reader

Carlos Borges
Chairman, Department of Applied Mathematics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis explores the numerical methods and software development for

optimal trajectories of a specific model of Helicopter Unmanned Aerial Vehicle

(UAV) in an obstacle-rich environment. This particular model is adopted from the

UAV Laboratory of the National University of Singapore who built and simulated

flights for an X-Cell 60 small-scale UAV Helicopter. The code, which allowed the

team to simulate flights, is a complex system of non-linear differential

equations—15 state variables and four control variables—used to maneuver the

state trajectories. This non-linear model is incorporated into a separate

optimization algorithm code, which allows the user to set initial and final time

conditions together with various constraints, and, using the same variable

scheme, optimize a trajectory. The optimal trajectory is defined by using a cost

function—the performance measure—and the system is subject to a set of

constraints (such as mechanical limitations and physical three-dimensional

obstacles). Simulations conclude that solutions are readily obtained; however, it

is still very difficult to derive trajectories that are truly optimal, and our work calls

for more future research in computational programs for optimal trajectory

planning. All simulations in this thesis are modeled using the MATLAB program.

.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. LITERATURE REVIEW .. 1
A. BACKGROUND ... 1
B. ARTICLE REVIEWS .. 1
C. CONCLUSION ... 6

II. PROBLEM FORMULATION... 7
A. INTRODUCTION.. 7
B. TRAJECTORY EQUATIONS... 7

1. Kinematics.. 8
2. Rigid-Body Dynamics.. 9
3. Main Rotor Flapping Dynamics .. 11
4. Yaw Rate Gyro Dynamics.. 12

C. CONTROLS ... 12

1. Aileron Servo Input ()latδ .. 13

2. Elevator Servo Input ()lonδ .. 13

3. Rudder Servo Input ()pedδ .. 13

4. Collective Pitch Servo Input ()colδ 13
D. CONSTRAINT EQUATIONS.. 14
E. THE PERFORMANCE MEASURE .. 21

III. PSEUDOSPECTRAL METHOD FOR OPTIMAL CONTROL....................... 27
A. INTRODUCTION.. 27
B. PROBLEM FORMULATION .. 27

IV. SIMULATIONS ... 35
A. INTRODUCTION.. 35
B. FLIGHT SIMULATION ... 35
C. OPTIMIZATION EXAMPLE ... 37
D. OPTIMAL CONTROL OF THE HELICOPTER UAV.......................... 39

1. Minimize Time, No Obstacles ... 40

V. CONCLUSIONS AND FUTURE RESEARCH .. 55
A. CONCLUSIONS... 55
B. FUTURE RESEARCH.. 57

LIST OF REFERENCES.. 59

INITIAL DISTRIBUTION LIST ... 61

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. A short, block building with center point (0,0,2) and a=4, b=4, c=2,
p=20 ... 16

Figure 2. A skyscraper type of building with center point (0,0,15) and a=4,
b=6, c=15, p=40 ... 17

Figure 3. A flat bridge with two end pillars (plot is constructed using three
separate functions; one for each pillar and one for the bridge
portion) ... 18

Figure 4. A suspension bridge with two end pillars below the road level, two
triangular suspension supports above the road level, and a number
of cables (number and positions along the x-axis can be altered
easily by the designer within the equation)... 19

Figure 5. A set of power lines with two poles and a buffer area simulating the
curved area created by hanging lines... 21

Figure 6. LGL Nodes, N = 16... 29
Figure 7. Flight Simulation, positions (x,y,z) with respect to time 36
Figure 8. Flight Simulation, velocities (u,v,w) with respect to time..................... 36
Figure 9. Control Variable (u) values at (t) for the Optimization Example.......... 38
Figure 10. x, y, and constraint values at (t) for the Optimization Example........... 39
Figure 11. Positions over time for Example 1 .. 42
Figure 12. Velocities over time for Example 1 ... 42
Figure 13. Control variable values over time for Example 1 43
Figure 14. Positions over time for Example 2 .. 45
Figure 15. Velocities over time for Example 2 ... 45
Figure 16. Control variable values over time for Example 2 46
Figure 17. Positions over time for Example 3 .. 48
Figure 18. Velocities over time for Example 3 ... 48
Figure 19. Control variable values over time for Example 3 49
Figure 20. Positions over time for Example 4 .. 51
Figure 21. Velocities over time for Example 4 ... 51
Figure 22. Control variable values over time for Example 4 52

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Dynamic Equation Variable Definitions... 8

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

 The success of this thesis and my Master’s degree completion at the

Naval Postgraduate School are due, in great part, to the generosity, hospitality,

and tremendous attitude of the entire Department of Applied Mathematics, whose

professionalism is unparalleled. Particularly, I owe a great deal of gratitude to my

thesis advisor, Dr. Wei Kang, whose expertise in the field of optimal control,

coupled with an awesome level of patience, have enabled me to accomplish this

project. I must also thank MAJ Joe Lindquist for his selfless nature and constant

willingness to help my never-ending string of coding issues. I also appreciate the

help from CDR (Ret.) Les Carr for helping me understand how a helicopter

works. Thanks are also in order for LTC (Ret.) Bard Mansager for allowing me

the opportunity to study here and to Dr. Carlos Borges for the bi-weekly

“counseling” sessions and the endless positive reinforcement that all students

should receive from their department’s leadership. Finally, as always, I must

thank my family for their constant love and support through everything in my 11

years in the Army.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. LITERATURE REVIEW

A. BACKGROUND

This project explores and simulates a specific algorithm for trajectory

optimization for UAVs in an environment with fixed or unfixed obstacles that may

be hard or soft in nature. A hard obstacle represents a physical obstruction

where contact will result in damage to the system and mission failure. A soft

obstacle represents something that should be avoided, but the algorithm user

can designate a priority or weighting to the obstacle to portray its level of

detriment to the UAV. Since both path and trajectory planning are popular topics

of research among the science community—with a plethora of applications—it is

important to conduct a literature review, both to gather ideas that may be helpful

to research and simulation, and to ensure that our algorithm is unique in nature.

 There are two types of relevant problems in the reviewed literature: path

planning and trajectory planning and optimization. Path planning is the least

complex of the two, but may provide some simple ideas that can still be applied

to more complex problems. Trajectory planning and trajectory optimization are

very similar as far as variables and parameters are concerned. The main

difference is that trajectory optimization is focused on maximizing or minimizing a

specific cost function (i.e., travel time, cost, fuel consumption). This chapter

provides a brief description of pertinent articles researched in each of the two

categories.

B. ARTICLE REVIEWS

Path planning is the simplest form of planning, since it generally involves

directional components of a vehicle or aircraft, which means that the model will

consist of two space variables for 2-D and three space variables for 3-D.

Occasionally, an analysis of path planning will include velocities which would

increase the number of variables to four and six, respectively. The best path is

created by optimizing these variables over a set of constraints.

 2

In [1], a team analyzes a problem slightly more difficult than standard path

planning, as it describes a method for finding the shortest path for multiple UAVs

flying simultaneously, rather than just one aircraft. This team uses Dubins paths,

which calculate a sum of circular arcs and their tangent lines, to determine the

best paths for a swarm of UAVs to simultaneously converge on a target region.

The model uses three general constraints: (1) A maximum bound on the UAV

curvature (due to limitations of the aircraft), (2) Minimum separation distance

between UAVs, and (3) Non-intersection of paths at equal length (to prevent

collision). The model intends to protect the aircraft while minimizing distance

travelled, which inherently achieves the goals of minimizing fuel consumption

while increasing durability of the UAVs [1].

Each UAV path is generated through finding a common plane between the

initial and final position vectors and the final tangent vector (i.e., for each path,

the three vectors are co-planar). Then, each path length is calculated using the a

specific set of equations. Each path is compared to a “Reference Path” which is

the longest of all possible UAV paths. Each path is then lengthened (by reducing

curvature) and compared against all existing constraints until an optimal solution

is obtained. Since no aircraft specifications pertain to this simple model, it may

be used for fixed or rotary winged aircraft [1].

The aspects of this article are helpful, since they provide a method for

coordinating several UAVs for simultaneous arrival on a designated target;

however, they avoid several critical aspects that are better addressed in

trajectory planning and optimization. First, this model assumes an equal path

length and a constant speed for all UAVs. Second, the analysis assumes an

obstacle-free environment. Finally, the equations used for this path planning

method do not optimize any critical performance functions that, in turn, do not

allow any maximization/minimization planning effects [1].

 3

Models of trajectory planning and/or optimization become more

complicated since they incorporate dynamics involving measures of performance

of the actual vehicle or aircraft, as well as directional variables. While

parameters and constraints still exist in the model, the number of variables and

dimension of the differential equation system will increase substantially. In this

case, the nonlinearity in the dynamics becomes the main challenge in the

searching for optimal solutions.

In [2], the authors study a time-variant model by analyzing the probability

of a UAV becoming disabled at a certain time juncture in a dynamic environment.

In other words, the probability of a UAV becoming disabled varies over the time

variable. This particular model requires that the UAV reach the objective

(accomplishing the mission) while utilizing the shortest path possible or finding

the trajectory that minimizes the probability of the UAV being disabled.

Weighting of parameters by the user determines which criterion is most important

to the model. The probabilistic map changes constantly over time; therefore, the

paths generated by this strategy incorporates functions of both position and time.

Consequently, variables will exist for velocity and acceleration, not just for the

position vector (as is the case in path planning). That means that this model

must also incorporate several constraints for UAV capabilities. As a UAV flies in

an area with multiple threats, the risk of the UAV becoming disabled is

characterized by the probability of the UAV becoming disabled at a certain

location and time. The probability is modeled using Gaussian Probability Density

Functions [2].

This probabilistic approach provides a much more useful method for UAV

planning, using trajectory planning rather than path planning. This allows the

modeler to emplace constraints based on the capabilities of the UAV and

capabilities of the threat as well as path direction. The model also allows all

variables to change over time which means that obstacles can be fixed, moving,

 4

and/or with changing capabilities based on both time and position. These

aspects of this model are very useful for the prospect of real-time trajectory

planning [2].

In [3], CDR Mike Hurni analyzes optimal control techniques for vehicle

trajectories specifically pertaining to minimizing the cost function for ground

vehicle operations. His dissertation shows, very methodically, how optimal

control techniques can work effectively to minimize cost (or another user selected

performance measure) while maximizing the flexibility for a ground vehicle to

alter its path in a real-time fashion in response to obstacles known or not known

a priori. In other words, his techniques can minimize cost while maximizing

robustness. His techniques also provide a great deal of flexibility in allowing the

user to alter weighting values to increase, decrease, or eliminate the impact of

certain aspects of the trajectory on the overall cost function value [3].

 Additionally, CDR Hurni’s work provides a series of “requirements

checks” on a particularly selected trajectory to test feasibility, obstacle

collision/buffer violation, caution zone infractions, and several other constraints

that may deem the trajectory to cause mission failure. These checks are

established in a way to allow the user to vary buffer zones, the number of

obstacles, the state of obstacles—fixed or unfixed—and other key criteria that

are critical to the flexibility of this particular optimal control system [3].

 In the final stages of the dissertation, CDR Hurni addresses the prospect

of multiple ground vehicles operating in the same space simultaneously. His

algorithm allows the user to implement weights involving collision and grazing

prevention for a varying number of vehicles. These weights are in addition to the

previously calculated weights for obstacle avoidance. This addition allows an

even broader range of use for the algorithm. CDR Hurni’s use of optimal control

methods has resulted in an extremely flexible algorithm that allows a user to

input and alter numbers and weightings for obstacle and ground vehicle criteria

and constraints while optimizing trajectory to minimize or maximize a function

 5

selected by the user. The only disadvantage to this project, as it pertains to our

work, is that our problem deals with a nonlinear system and much more complex

dynamics [3].

In [4], a team documents their construction of a vehicle to compete in the

DARPA Urban Challenge by formulating and solving an optimal and real-time

trajectory planning problem with velocity variables and nonlinear dynamics. In

forming their optimal trajectory formula, the team integrates boundary conditions

at the initial and final time instances, motion constraints, and collision avoidance

criteria as the three conditions that must be satisfied to enable a feasible

trajectory. The fourth constraint is the minimization of the “performance index”

(optimization). These constraints are designed with the assumption that

boundary conditions and motion constraints are generally given while

optimization and collision avoidance criteria are chosen to fit the designer’s

needs for a specific situation [4].

 The key development for this trajectory planning problem is the idea of

real-time obstacle avoidance. This means that it is assumed that obstacles may

be fixed or moving and that the positions of these obstacles are generally not

known a priori which means that trajectories must be re-planned multiple times

throughout movement between the initial and final positions. Three key features

enable this method to satisfy the requirement: (1) All paths satisfying boundary

conditions and the vehicle’s kinematic constraints are parameterized in terms of

polynomials of sufficient order, (2) A collision-free criterion is developed and

imposed for avoiding both “hard” and “soft” obstacles that are detected along the

path (in real time), and (3) A performance index is introduced to find the best

path among the collision-free paths meeting all necessary criteria [4]. Finally, the

performance index is chosen so that paths equivalent to the shortest path can be

solved analytically while meeting all criteria—based on both given constraints

and those imposed by the designer. The bottom line is that, for a successfully

optimal trajectory that completes the mission in a real-time changing dynamic

environment, the trajectory must be modeled in a piecewise fashion as the

 6

vehicle moves from its initial to final position. The team’s conclusion is that this is

most effectively accomplished through use of a parameterized fourth-order

polynomial. By obtaining the solution to an adjustable parameter, it is possible to

generate a real-time solution [4].

 The method discussed in this article provides the same advantages as

were discussed in CDR Hurni’s dissertation with the exception of not including a

model with multiple vehicles to be coordinately controlled. Also, the solution for

this model was derived analytically, and our complex nonlinear model will most

certainly require a numerical model to ensure solvability.

C. CONCLUSION

 The professional works uncovered during the literature review phase of

this thesis have shown that trajectory optimization is a complex problem which

complicates drastically when non-linear dynamics and constraints are involved.

The papers reviewed demonstrate several methods for analyzing and solving

path and trajectory planning problems. They all have strengths and weaknesses

that are pertinent to our future research. The key point is that none of them truly

solve our exact situation that requires optimality of the performance measure, so

we will surely incorporate some of the ideas from these works. Significant

original input will also be required to fulfill our objective: to derive and test an

algorithm to numerically solve an optimal trajectory for a UAV in a dynamic

environment with and without obstacles.

 7

II. PROBLEM FORMULATION

A. INTRODUCTION

At the end of Chapter I, it is clearly stated that the objective is to produce

an optimal UAV trajectory in a dynamic environment with fixed and/or moving

obstacles. This objective requires the derivation of a system of equations and

functions that consider three separate elements: 1) The dynamic equations that

determine the trajectory of the UAV, 2) The trajectory constraints, and 3) The

performance measure for optimization. The dynamic equations involve a system

of both state and control vectors. The state vectors are represented by the

positions, attitudes, and velocities of the UAV—all with respect to time. The

control vectors are determined by the system inputs controlled by the algorithm’s

user. Trajectory constraints, in this case, alter the trajectory to avoid all

obstacles in a projected path. The optimizing performance measure outlines a

function to minimize cost, time, or another parameter of our choosing by solving

for the optimal control vector in a given trajectory. The remainder of this section

will use the three elements explained above to develop a logical and solvable

problem that allows us to fulfill the stated objective.

B. TRAJECTORY EQUATIONS

 The trajectory equations for this particular system will be structured in the

form of a comprehensive non-linear differential equation model based on a

Helicopter UAV built and modeled by a research team from the National

University of Singapore. The model will consist of four key components that will

derive a total of 15 state variables and, consequently, 15 differential equations:

1) Kinematics, 2) Six degree-of-freedom (DOF) rigid-body dynamics, 3) Main

rotor flapping dynamics, and 4) Yaw rate gyro dynamics [5]. Prior to introducing

the non-linear system, Table 1 defines the 15 state variables and four

 8

control variables. First, it is important to realize that the UAV will operate in two

different sets of coordinate frames: Body Frame (used for velocities and based

on coordinates with reference to the actual vehicle) and North-East-Down Frame

(used for positions and based on an initially fixed set of coordinates [North = x,

East = y, Down = z]) [5].

Table 1. Dynamic Equation Variable Definitions

1. Kinematics

 The kinematics component generates six of the 15 state variable

differential equations for our system. The six equations are derived from two

vector equation systems, each with three equations, based on position and

velocity (in the x, y, and z directions). The first equation set is for position:

n B bP B V= ⋅

where

(, ,)T
n x y zP p p p=

Variable Variable Definition Unit

, ,x y zp p p Position Vector along the North-East-Down (NED) Frame (x,y,z) meters
, ,u v w Velocity Vector along the Body Frame (x,y,z) meters/sec.

, ,θΦ Ψ Roll, Pitch, and Yaw Angles (Euler Angle in the NED Frame) radians
, ,q r s Roll, Pitch, and Yaw Angular Rates in the Body Frame radians/sec.

,s sa b Longitudinal and Lateral Tip-Path-Plane (TPP) Flapping Angles radians

,intpedδ Intermediate State in Yaw Rate Gyro Dynamics N/A

latδ Allows the user to control the ailerons of the Helicopter UAV N/A

lonδ Allows the user to control the elevators of the Helicopter UAV N/A

colδ Allows the user to control the collective pitch of the Helicopter UAV N/A

pedδ Allows the user to control the rudder of the Helicopter UAV N/A

 9

is the position vector in the NED Frame and

(, ,)T
bV u v w=

is the velocity vector in the Body Frame. Since the position and velocity vectors

are defined in different coordinate spaces, it is imperative to have a

transformation matrix between the two. This transformation matrix, designated

BB , is defined below [5].

cos() cos() sin()sin() cos() cos()sin() cos()sin() cos() sin()sin()
cos()sin() sin()sin() cos() cos() cos() cos()sin()sin() sin() cos()

sin() sin() cos() cos() cos()
BB

θ θ θ
θ θ θ

θ θ θ

Ψ Φ Ψ − Φ Ψ Φ Ψ + Φ Ψ⎛ ⎞
⎜ ⎟= Ψ Φ Ψ + Φ Ψ Φ Ψ − Φ Ψ⎜ ⎟
⎜ ⎟− Φ Φ⎝ ⎠

The second kinematic equation set is for rotational motion:

n B bSΩ = ⋅Ω
where

(, ,)T
n θΩ = Φ Ψ

is the Euler Angle Vector in the NED Frame and

(, ,)T
b q r sΩ =

is the angular velocity vector in the Body Frame. Just as is the case with the first

equation set, the different coordinate spaces require a corresponding

transformation matrix, designated SB and defined below.

1 tan()sin() tan() cos()
0 cos() sin()

sin() cos()0
cos() cos()

BS
θ θ

θ θ

⎛ ⎞
⎜ ⎟Φ Φ⎜ ⎟

= Φ − Φ⎜ ⎟
⎜ ⎟Φ Φ⎜ ⎟⎜ ⎟
⎝ ⎠

2. Rigid-Body Dynamics

The six degrees of freedom of the rigid body dynamics of the helicopter

generate two additional systems of equations, with each system containing three

 10

equations. These six equations derive the six components of the helicopter’s

velocity (three in space and three angular) and are represented by the following

Newton-Euler Equations:

() gb
b b b

FFV V
m m

= −Ω × + +

and

1[()]b b b bI M I−Ω = − Ω × Ωi

where

()sin , sin cos , cos cos T
gF mg mg mgθ θ θ= Φ Φ

is the gravity force vector,

()

()

()

mr fusbx

b by mr fus tr vf

bz mr fus hf

X XF
F F Y Y Y Y

F Z Z Z

⎡ ⎤+⎡ ⎤
⎢ ⎥⎢ ⎥= = + + +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

is the aerodynamic force vector,

()

()

()

mr vf trbx

b by mr hf

bz mr vf tr

L L LM
M M M M

M N N N

⎡ ⎤+ +⎡ ⎤
⎢ ⎥⎢ ⎥= = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

is the moment vector, and

0 0
0 0
0 0

xx

yy

zz

I
I I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 11

is the moment of inertia matrix. The term m represents the total mass of the

helicopter UAV, and g represents a constant value for gravity. The subscripts

mr, tr, fus, vf, and hf represent main rotor, tail rotor, fuselage, vertical fin, and

horizontal fin or the helicopter, respectively. The X, Y, Z, L, M, and N terms are

all equations based on combinations of different coefficients and variables.

Expanded detail of all terms can be found in [5].

3. Main Rotor Flapping Dynamics

These two state variables, sa and sb , represent the longitudinal and

lateral Tip Path Plane angles as the main rotor spins during flight. The dynamics

of these two variables are represented by the following equations:

1 lons s s
s lon

Aa a aa r u w
u w

δδ δ δ
τ τ δ δ τ

⎛ ⎞= − − + + +⎜ ⎟
⎝ ⎠

and

1 lats s
s lat

Bb bb q v
v

δδ δ
τ τ δ τ

= − − − +

where τ represents the effective rotor time constant of the main rotor system,

sa
u

δ
δ and

sb
v

δ
δ are the longitudinal and lateral dihedral effect derivatives,

sa
w

δ
δ

is the flap-back effect derivative, lon
Aδ is the effective linkage gain from the

control variable lonδ to the cyclic pitch angle along the longitudinal direction,

and lat
Bδ is the effective linkage gain from the control variable latδ to the cyclic

pitch angle along the longitudinal direction [5]. Control variables are defined and

explained in Section C. Expanded detail of these terms can be found in [5].

 12

4. Yaw Rate Gyro Dynamics

For small-scale remote controlled helicopters, the yaw moment is very

sensitive; therefore, it is very difficult to control yaw motion in manual flight. To

combat this challenge, small-scale helicopters are commonly equipped with a

yaw rate gyro, which consists of a gyro sensor and an embedded controller, to

allow the human controller to modify the yaw rate and/or heading. In modern

models, such a device is not essential to fly a programmed path; however, it is

reserved for the manual back-up flight system. Therefore, the yaw rate gyro’s

dynamics must be included in the non-linear flight model and are represented by

the following differential equation:

,intped a pedK sδ δ= −

where aK represents a scaling value (a constant of value 3.73), and pedδ

represents the control variable for rudder servo input (defined and explained in

Section C) [5].

 The 15 variables described in the four preceding subsections are the

system whose solutions, based on the variation of the four control variables,

were used by the team in the non-linear model to code simulated flight paths for

the X-Cell 60 small-scale UAV helicopter. This same non-linear model is the

critical input piece into the code that will eventually create a numerical program to

optimize the trajectory of the same UAV helicopter.

C. CONTROLS

In order to achieve solutions to the 15 state variable differential equations,

it is essential to impose a set of controls that will directly impact the flight of the

helicopter and, therefore, will generate state variable solutions throughout an

interval of time. These controls, which are non-dimensional, have been scaled in

 13

this particular model to have values between -1 and 1. There are four total

control variables, and they are annotated, along with their impact on the

helicopter’s flight, in the following subsections [5].

1. Aileron Servo Input ()latδ

 This control variable allows the user to control the ailerons of the

helicopter. This particular input will directly influence the state of roll for the

aircraft (p and Φ as far as the state variables are concerned) [5].

2. Elevator Servo Input ()lonδ

 This control variable allows the user to control the elevators of the

helicopter. This particular input will directly influence the state of pitch for the

aircraft (q and θ as far as the state variables are concerned) [5].

3. Rudder Servo Input ()pedδ

 This control variable allows the user to control the rudder of the

helicopter. This particular input will directly influence the state of yaw for the

aircraft (r and Ψ as far as the state variables are concerned) [5].

4. Collective Pitch Servo Input ()colδ

 The collective pitch control is the most unique of the four. While it has the

same range of input values, it is not an independent control. This means that it

may not be altered without changing at least one of the other control variables to

balance it. Changing only the collective pitch will cause the aircraft to become

unstable and possibly crash. Obviously, this provides disastrous results for

trajectory simulations [5].

 14

The user programmed inputs of the aforementioned four control variables,

forced to conform to pre-determined constraints, will allow a property designed

non-linear model to create solutions to the state variable differential equation

system.

D. CONSTRAINT EQUATIONS

 The development of obstacle constraints involves limitations to the

trajectory of the vehicle that do not involve maximum and minimum restrictions

from the system state or control inputs. This section will focus on obstacle

avoidance.

 The main focus of this particular UAV Trajectory Model is for use in an

urban environment, so it is important to consider typical obstacles one might

encounter while travelling aerially in a city. There are three obstacle types:

buildings, power lines (with poles), and bridges. Ideally, a model that can handle

all three types is optimal. It is important to note that the model cannot produce

obstacles with rigid corners, as this can result in non-differentiable functions as

we attempt to solve the system. The obstacle modeling in this section uses the

p-norm to create a variation on the standard 3-D equation for an ellipsoid-shaped

region. The equation h(x,y,z) shows the general form used to model the

obstacles.

() () ()
((), (), ()) 1 0

p p px t x y t y z t z
h x t y t z t

a b c
ϕ ϕ ϕ− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

• x(t), y(t), z(t) represent the position (x,y,z) with respect to time

• xϕ , yϕ , zϕ represent the center position locations inside of each obstacle

• a represents the distance from the center to the obstacle boundary in

the x-direction

• b represents the distance from the center to the obstacle boundary in

the y-direction

 15

• c represents the distance from the center to the obstacle boundary in

the z-direction [3].

 The absolute value signs can be removed from the equation if the p-

values are limited to even numbers. This is suitable, since increasing the value

of p will merely alter the shape of the obstacle from more circular/elliptical to

more square/rectangular [3]. Therefore, the equation below, where p>0 and

even, will be used for all subsequent examples which will model several

obstacles types using MATLAB.

() () ()
((), (), ()) 1 0

p p px t x y t y z t z
h x t y t z t

a b c
ϕ ϕ ϕ− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 This model assumes that the ground is flat and represents the xy-plane

which means that the z-axis is vertical and z ≥ 0 in all instances.

 16

Example 1

20 20 202 1 0
4 4 2
x y z −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Figure 1. A short, block building with center point (0,0,2) and a=4, b=4, c=2,
p=20

 17

Example 2

40 40 4015 1 0
4 6 15
x y z −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Figure 2. A skyscraper type of building with center point (0,0,15) and a=4,
b=6, c=15, p=40

Example 3

Left Pillar:

20 20 2029 10 1 0
2 2 20

x y z− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Right Pillar:

20 20 2029 10 1 0
2 2 20

x y z+ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Bridge Portion:

20 20 205 1 0
30 2 2
x y z −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 18

Figure 3. A flat bridge with two end pillars (plot is constructed using three
separate functions; one for each pillar and one for the bridge portion)

Example 4

Left Pillar:

20 20 2029 35 1 0
2 2 5

x y z− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Right Pillar:

20 20 2029 35 1 0
2 2 5

x y z+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Bridge Portion:

20 20 2030 1 0
30 2 2
x y z +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 19

Suspension Supports:

2020 20 2(15)15 1 0
15 2 20

z xx y ⎛ + + ⎞+⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 for x<0

2020 20 2(15)15 1 0

15 2 20
z xx y ⎛ + + ⎞+⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 for x>0

Suspension Cables:

2 2 20(30) 1 0
.5 2

x d y z c
c

± ± −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Note: For the Suspension Cable Equation, a value of c must be selected so that

the z coordinate for the to of the suspension cable matches the z coordinate for

the suspension support for each selected value of x±d.

Figure 4. A suspension bridge with two end pillars below the road level, two
triangular suspension supports above the road level, and a number of

cables (number and positions along the x-axis can be altered easily by the
designer within the equation)

 20

 Examples 1 through 4 demonstrate legitimate urban obstacle possibilities

with constants that the designer can easily alter to change the size, shape, and

position of the particular obstacles. Although the implicit equation used is

exponential in nature, most of the outcomes are fairly linear in nature; another

challenge arises when we concern obstacles with curvature—i.e., power lines.

This requires the orientation of the previous model in the direction of a Catenary.

To form the suspension supports in Example 4, a variant of the third term, using

a linear x-term in addition to the z-term, provides the necessary result. Example

5 demonstrates an example of a power line obstacle, but, contrary to Example 4,

the x-term added to the third term is non-linear in nature, which inherently results

in curvature.

Example 5

Left Pole:

2 2 2029 2 1 0
2 2 15

x y z− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Right Pole:

2 2 2029 2 1 0
2 2 15

x y z+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Power Lines: ()
2

10
10 1 1 0

30 20

cxx y z
c

⎛ ⎞⎛ ⎞ ⎜ ⎟+ + − − − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 for []0.5,2c∈

Note: The larger the value of c, the more increased the curvature in the shape

becomes. At values of c>2, the plot in MATLAB begins to disintegrate. Values of

c>2 should be unnecessary for the purpose of designing obstacle for this project.

For the plot below, c = 1.6.

 21

Figure 5. A set of power lines with two poles and a buffer area simulating the
curved area created by hanging lines

Examples 1 through 5 have demonstrated some different equations for

modeling certain types of common urban obstacles into the constraint function.

E. THE PERFORMANCE MEASURE

Thus far, we have discussed the development of a non-linear state

variable equation system, using control variables and constraints, for a Helicopter

UAV model that allows a user to simulate flights and plot the trajectories. A user

may alter these trajectories through changing the control variables in the

computer model. Finally, an optimization function will incorporate the non-linear

simulation model, and all of its conditions, into an integral (evaluated over time)

that will allow the user to minimize a particular aspect of the UAV’s operation—

called a cost.

In order to complete the problem formulation process for optimal control, it

is critical to identify clearly the performance measures of the system one wishes

to optimize. A different designer may choose different performance measures,

but for this project, we will use time and cost. An optimization function is one that

will either minimize or maximize the chosen performance measures—in this

 22

case, both time and cost will be minimized. The optimization functions

developed in this section will combine the states, controls, and constraints into

one equation that eventually provides our desired optimization endstate.

The problem in this model finds a solution for the optimal control vector

(u*) which causes the system

() ((), (),)d x t f x t u t t
dt

=

to follow an allowable trajectory (x*) which minimizes the performance measure

(J) such that

0

((),) ((), (),)
ft

f f
t

J h x t t f x t u t t dt= + ∫

where the function ((),)f fh x t t represents an endpoint cost not associated with

the trajectory itself [6].

In this case, the allowable trajectory x* that minimizes the performance

measure J is called the optimal trajectory [6]. Two things must be realized prior

to modeling optimal control problems. First, an optimal control solution may not

be unique. This is not necessarily detrimental; although it may complicate the

computational aspect of calculation, it can allow flexibility for the designer’s

configuration scheme. Second, an optimal control may not exist—this is

detrimental to our desired results

In order for the constraint algorithm to perform properly, four critical input

components are coded to formulate a solution:

 23

• The Cost Function: Defines and codes the integral for the actual cost

optimization function

• The Dynamics Function: Takes the inputted non-linear model from the

flight simulation codes to program the state and control differential

equation systems into the optimization algorithm

• The Path Function: Allows the user to program the desired constraints

into the optimization algorithm in order to limit state variable outputs

• The Events Function: Defines and codes the initial and final condition

limits for state variable values on which the user desires to enforce

hard values.

The next part of this project will describe how the algorithm inside of the

optimization programs works to produce a solution from the aforementioned

inputs.

Overall, this thesis will attempt to obtain a unique optimal solution for, at a

minimum, several examples of the following scenario for the X-Cell 60 small-

scale helicopter UAV:

• Minimize flight time; no obstacles.

In summary, we will find an optimal solution (minimum flight time) for J in

0

((), (),)
ft

J f x t u t t dt= ∫

 24

where

,int

()

x

y

z

s

s

ped

p
p

p
u
v
w

x t

q
r
s
a
b

θ

δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ⎜ ⎟
⎜ ⎟=
⎜ ⎟

Ψ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

and

()

lat

lon

col

ped

u t

δ
δ
δ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 25

governed by

n B bP B V= ⋅

n B bSΩ = ⋅Ω

() gb
b b b

FFV V
m m

= −Ω × + +

1[()]b b b bI M I−Ω = − Ω × Ωi

1 lons s s
s lon

Aa a aa r u w
u w

δδ δ δ
τ τ δ δ τ

⎛ ⎞= − − + + +⎜ ⎟
⎝ ⎠

1 lats s
s lat

Bb bb q v
v

δδ δ
τ τ δ τ

= − − − +

and

,intped a pedK sδ δ= −

where

(, ,)T
n x y zP p p p=

(, ,)T

bV u v w=

(, ,)T
n θΩ = Φ Ψ

(, ,)T
b q r sΩ = .

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

III. PSEUDOSPECTRAL METHOD FOR OPTIMAL CONTROL

A. INTRODUCTION

For quite some time, mathematicians have struggled with a reliable

method for solving optimal control problems with complicated nonlinear dynamics

and constraints. Over the past decade, direct computational methods have

become increasingly popular for solving these optimal control problems [7]. In

direct methods, a continuous time problem is discretized over a set time interval,

and the resulting discrete problem is solved numerically using nonlinear

programming algorithms. Due to significant progress in large-scale

computational algorithms and nonlinear programming, direct Pseudospectral

(PS) methods have emerged as reliable direct methods for optimal

control [8, 9, 10]. For quite some time, PS methods have been widely applied for

complex scientific computation models involving differential equations, and PS

methods have proven themselves as very efficient in solving these problems.

However, only recently have PS methods intersected with nonlinear optimal

control [11, 12]. This project uses a PS algorithm to numerically solve the

problem of optimal control for the purpose of optimal UAV trajectory planning.

B. PROBLEM FORMULATION

This section will articulate how the PS method discretizes the problem of

optimal control subjecting to nonlinear dynamics into a problem of finite

dimensional nonlinear optimization, enabling the application of computational

nonlinear programming to solve for the optimal control and optimal trajectories.

Consider the following general optimal control problem:

1

1

min[((), ())] ((), ()) ((1), (1))J x u F x t u t dt E x x
+

−

= + −∫i i

subject to the following set of differential equations and initial conditions:

 28

(,)x f x u= ; ,n mx u∈ ∈

((1), (1)) 0e x x− = ; ((), ()) 0h x t u t ≤

where x is the state variable and u is the control input [7].

((1), (1))E x x−

is the cost due to the endpoints,

((1), (1)) 0e x x− =

is the condition at the endpoints, such as initial value, and

((), ()) 0h x t u t ≤

is the set of state and control variable constraints. The PS method uses Sobolev

spaces ,m pW , which involve functions ()tξ , defined in [1, 1]− + , whose j-th order

weak derivative, ()jξ , lies in the space pL for all 0 j m≤ ≤ with the norm [7]

,
()

0
m p p

m
j

W L
j

ξ ξ
=

=∑ .

 As previously mentioned, the PS method is an efficient direct method; this

means that the actual optimal control problem, not the associated necessary

conditions, is discretized to obtain a non-linear programming problem. Just as in

any problem solved numerically, the accuracy of the PS method depends

strongly on the method of approximation. Given a function () :[,]f t a b →R , one

could conventionally approximate ()f t by interpolating over uniformly spaced

time nodes where 0 1, () / ,..., Nt a t b a N t b= = − = , and N is equal to the number of

interpolation points (or time nodes in the algorithm). However, it is widely known

and proven that uniformly spaced points may produce numerical solutions with

much higher approximation error, for the same number of points, than those

 29

calculated using other more sophisticated interpolation methods [7].

Furthermore, it is critical to emphasize that the number of interpolation points in

calculating the solution to an optimal control problem is not only an issue of

efficiency, but also of feasibility. A higher number of interpolation points results

in a higher dimension in the non-linear programming model. If a particular model

becomes too complex, it can easily overwhelm computational capabilities of an

operating system; we obviously do not want this to happen and must carefully

select an efficient interpolation method that can provide a low-error solution with

relatively few nodes [7].

 The PS model used for this project involves interpolating with Legendre-

Gauss-Lobatto (LGL) quadrature nodes. These nodes, denoted by

{ }0 1 2 11 1n nt t t t t−= − < < < < < =… , are the roots of NL where NL is the Nth-order

derivative of the Legendre Polynomial ()NL t . Using this method, the range of

integration is transformed universally to [-1,+1], which is the interval for Legendre

Polynomials. Although the LGL interpolation points are not evenly spaced, they

are symmetric about the midpoint 0 [7]. Figure 6 shows a range of LGL points for

N = 16.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 LGL Points; N=16

Figure 6. LGL Nodes, N = 16

 30

PS methods are widely applied to numerically solve models using partial

differential equations (PDEs). However, optimal control problems have several

fundamental differences from the computation of PDEs. Solving optimal control

problems asks for the collective and simultaneous solving of several different

systems, including the differential equation governing the control system, the

integration of the cost function, and the state-control constraints. Then these

approximations are integrated together to form a problem of discrete nonlinear

optimization which must be solved numerically to find the approximate optimal

control [7].

In a PS optimal control method, the state and control functions, x(t) and

u(t), are approximated by Nth order Polynomials based on interpolation at

selected LGL quadrature nodes. In the discretization, the state variables are

approximated by the vectors

1

2

Nk

Nk
Nk

Nk
r

x
x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

which is an approximation of ()kx t . Also, the vector Nku is the approximation of

()ku t . Consequently, a discrete estimation of the function ()ix t is the vector

1 2, , ,N N N NN
i i i ix x x x⎡ ⎤= ⋅⋅⋅⎣ ⎦ .

A continuous estimate can be defined by a polynomial interpolation ()N
ix t where

0
() () ()

N
N Nk

i i i k
k

x t x t x t
=

≈ = Φ∑

where ()k tΦ is the Lagrange interpolating polynomial [13]. In contrast, the

control input is approximated by the non-polynomial interpolation

 31

() (())()
(())

N N
N r

N

x t f x tu t
g x t
−

= .

In the notations, the discrete variables are denoted by letters with an upper bar,

such as Nk
ix and Nku . If k in the superscript and/or i in the subscript are missing,

then the notation represents a vector or matrix in which those particular indices

run from their minimum to maximum values [7]. For example,

1 2, , ,N N N NN
i i i ix x x x⎡ ⎤= ⋅⋅⋅⎣ ⎦

1

2

Nk

Nk
Nk

Nk
r

x
x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0 1
1 1 1

0 1
2 2 2

0 1

N N NN

N N NN
N

N N NN
r r r

x x x
x x x

x

x x x

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1 2, , ,N N N NNu u u u⎡ ⎤= ⋅⋅⋅⎣ ⎦

where

{ }0,1,2,...,k N= is the interpolation point (node) number

{ }1,2,...,i r= is the state variable number

N = the total number of interpolation points (nodes)

r = the total number of state variables

 and k, i, N, and r are the subscript and superscript definitions [7].

 32

 The analysis of spectral methods demonstrates that PS method is simple,

accurate, and relatively fast in the estimation of smooth functions, integrations,

and differentiations. These are all critical pieces for solving optimal control

problems. The derivative of ()N
ix t at the LGL node kt is easily computed by

using matrix multiplication:

0 1 2() () () () ()
TN N N N N T

i i i i N ix t x t x t x t D x⎡ ⎤ =⎣ ⎦

where the (1) (1)N N+ × + differentiation matrix D is defined by

() 1 ,
()

(1) , 0
4

(1) ,
4
0,

N i

N k i k

ik

L t if i k
L t t t

N N if i kD

N N if i k N

otherwise

⎧⎛ ⎞⎛ ⎞
≠⎪⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎪

⎪ +⎪ − = ==⎨
⎪ +⎪ = =
⎪
⎪⎩

.

The cost functional []() , ()J x u⋅ ⋅ is approximated by the Gauss-Lobatto integration

rule,

[] ()() , () ,N N NJ x u J x u⋅ ⋅ ≈ () ()0

0

, ,
N

Nk Nk N NN
k

k

F x u w E x x
=

= +∑

where kw are the LGL quadrature weights defined by

()2
1 2

(1)()k
N k

w
N NL t

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

.

The approximation is so accurate that it has no error if the integrand function is a

polynomial of a degree less than 2N [7].

 33

 In order to demonstrate the PS discretization, consider the following

general nonlinear optimization problem:

Find Nk rx ∈ and Nku ∈ , { }0,1, ,k N= … , that minimize

0

0
(,) (,) (,)

N
N N N Nk Nk N NN

k
k

J x u F x u w E x x
=

= +∑

subject to

0

(,)
N

Ni Nk Nk
ki

i

D x f x u δ
= ∞

− ≤∑

0(,)N NNe x x δ
∞
≤

(,)Nk Nkh x u δ≤

where δ is a small positive number as the relaxation of the constraints. Such

relaxation is necessary as shown in [14]. It guarantees the feasibility of the

problem.

0

(,)
N

Ni Nk Nk
ki

i

D x f x u δ
= ∞

− ≤∑

represents the discretization of the control system defined by the differential

equation. Constraints are imposed and then tightened, as necessary, to define a

search region within which nonlinear programming software packages can

produce a feasible optimal control solution [7]. In [7], it is proven for feedback

linearizable systems—a family of widely used control systems—that the value of

the optimal cost of the discretized nonlinear optimization converges to the

optimal cost of the original problem of optimal control. It is also proven that the

method has a high order rate of convergence depending on the smoothness of

the original problem. This result implies that the PS methods are convergent and

numerically efficient.

 34

In conclusion, this chapter has shown how PS optimal control methods

allow a problem of optimal control subject to complex nonlinear dynamical and

algebraic constraints to be discretized and solved numerically. The discretization

works in a harmonic way for the multiple components in the problem, the cost

function, the nonlinear control system, and the algebraic constraints. The

efficient transition from continuous to discrete is crucial in the solution of the UAV

optimal trajectory problem. Also, further analysis of References 7, 14 and 15

show that calculating optimal cost solutions using PS methods has a very high

rate of convergence when compared to other methods; in fact, the Legendre PS

method will have a faster convergence rate than any polynomial method [7, 14,

15].

 35

IV. SIMULATIONS

A. INTRODUCTION

The objective for this thesis is to computationally find optimal trajectories

and controls and obtain a unique solution for, at a minimum, the scenario

discussed at the end of Chapter II: minimize flight time with no obstacles.

Before simulating this scenario, it is necessary to mesh two existing codes

from two separate entities in order to use an optimizing algorithm in conjunction

with the non-linear model of the X-Cell 60 Helicopter UAV. Prior to meshing

these codes together, it is critical to ensure that they both function separately.

Consequently, flight simulations are conducted using the non-linear helicopter

and flight simulation codes provided by the team from the National University of

Singapore, and a simple example scenario is optimized using an algorithm

developed at the Naval Postgraduate School. Once the codes operate

separately, the non-linear helicopter model is imported into the optimizing

program to provide a single code that will optimize the trajectory for our selected

Helicopter UAV model.

B. FLIGHT SIMULATION

The codes used from the National University of Singapore contain two key

files: 1) The nonlinear helicopter model and 2) The flight simulation code (which

takes the non-linear model and inputs it into a fourth order Runge-Kutta Method

loop to fly over a set number of time steps). Initially, the code designers set the

control variables latδ , lonδ , and colδ as fixed values throughout all time steps and

the pedδ control variable to change linearly with respect to the Intermediate State

in Yaw Rate Gyro Dynamics state variable. These control variable settings

ensured flight stability and are set in a manner to fly the UAV on a relatively

 36

straight path in the y direction (due East). Figures 7 and 8 show the positions

and velocities, respectively, in the x, y, and z directions over time with the

parameter set by the code designers.

0 2 4 6 8 10 12 14 16 18
-60

-40

-20

0

20

40

60
Position described in ground frame

Time (s)

P
os

iti
on

 (m
)

xg
yg
zg

Figure 7. Flight Simulation, positions (x,y,z) with respect to time

0 2 4 6 8 10 12 14 16 18
-5

-4

-3

-2

-1

0

1

2

3

4

5
Velocity described in body frame

Time (s)

V
el

oc
ity

 (m
/s

)

u
v
w

Figure 8. Flight Simulation, velocities (u,v,w) with respect to time

 37

As shown in Figures 7 and 8, the Flight Simulation code, using the non-

linear model, produces a stable flight for the Helicopter UAV; therefore, the non-

linear model should behave properly when integrated into the optimization

algorithm.

C. OPTIMIZATION EXAMPLE

In order to gain a better understanding for the optimization program, it was

essential to run an elementary example prior to solving such a complex system

as our Helicopter UAV model. The initial example is a simple system with two

state variables and one control variable. The example problem is

x y
y y u
=⎧

⎨ = +⎩

where u is the control variable and the performance measure is

1
2 2

0

min[] (.005)J x y u dt= + +∫

subject to the constraint

21 18
2 2

y t⎛ ⎞≤ − −⎜ ⎟
⎝ ⎠

and the initial conditions

(0) 0
(0) 1

x
y

=⎧
⎨ =−⎩

where [0,1]t∈ .

It turns out that the optimization algorithm provides an optimal solution to this

problem. This is determined by the Exit Codes; these codes are built into the

program to show that a solution is optimal or to help refine possible reasons for

 38

non-optimal solutions. In this particular case, the Exit Code is 1—an optimal

solution with all conditions satisfied [16]. Figure 9 depicts the control variable

values throughout the time interval, and Figure 10 shows the x, y, and constraint

values throughout the time interval. It is clear from Figure 10 that the state

variable values follow the constraint. All of the outputs from the optimization

algorithm determine that the value .1803J = is a minimum value.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

20

time (t)

u(
t)

Plot of control variable value at time (t)

u(t)

Figure 9. Control Variable (u) values at (t) for the Optimization Example

 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

Time (t)

V
al

ue
 a

t (
t)

Plot of x,y,and constraint values at time (t)

x(t)
y(t)
constraint value at (t)

Figure 10. x, y, and constraint values at (t) for the Optimization Example

D. OPTIMAL CONTROL OF THE HELICOPTER UAV

Since both codes have separately provided successful results, it is time to

mesh the codes and begin working through some examples using our non-linear

Helicopter UAV model. It is crucial for us to understand that simulations are

testing the optimal control algorithm and the non-linear UAV model. The UAV

model has been verified for stability and simulation of smooth curve flight but not

necessarily for use in optimal control. Any simulation errors or inconsistencies

could result from incompatibilities in either code.

For all optimization simulations, 30 LGL time nodes are used. This

number of nodes seem to provide the best results throughout simulations. The

control variables, as given in the non-linear helicopter model, have non-

dimensional values and are bounded in the following manner:

 40

[1,1]latδ ∈ −

[1,1]lonδ ∈ −

[1,0]colδ ∈ −

[1,1]pedδ ∈ − .

1. Minimize Time, No Obstacles

For the time minimization performance measure, four simple examples are

run:

Example 1: The UAV travels from the point (0, 0, -10) to the point (10, 0, -10)

(the initial and final position values in the y and z directions,

respectively, are the same)

Example 2: The UAV travels from the point (0, 0, -10) to the point (10, 10, -10)

(the initial and final position values are the same in only the z

directions)

Example 3: The UAV travels from the point (0, 0, -10) to the point (50, 0, -10)

(same conditions in the y and z directions with the distance

travelled in the x direction increased from 10 to 50 units)

Example 4: The UAV travels from the point (0, 0, -10) to the point (50, 50, -10)

(the total distance travelled in both the x and y directions is

increased from 10 to 50 units).

All four examples have the same initial conditions for the state variables (all

values are zero, except for zp , which is initially -10; this implies that the

helicopter begins at a position 10 units above the ground). Since the objective is

to minimize time, the integral for the performance measure is simply

 41

0

min[] 1
ft

J dt= ∫

where the solution simplifies to ft .

For Example 1, 12 of the state variables have fixed boundary conditions at

ft ; they are annotated in the vector equation

10
0
10
0
0
0
0
0
0
0
0
0

f

f

f

x

y

z

f

f

f

f

f

f

f

f

f

p

p

p

u

v

w

q

r

s

θ

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟Φ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟Ψ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

.

Since there are no obstacles impeding the trajectory, the expectation is

that the solution should be a relatively straight flight path in the x-direction with a

smooth acceleration for the first half of the flight followed by a smooth

deceleration for the second half in order to return to a u and v value of 0 at ft .

As shown in Figures 11 and 12, the actual solution provided by the algorithm

adheres closely to our predictions.

 42

0 0.5 1 1.5 2 2.5 3
-15

-10

-5

0

5

10

15

Time (t)

p(
t)

Positions over Time for Example 1 (min. time, no constraints; x(0) = 0, x(tf) = 10)

p(x)
p(y)
p(z)

Figure 11. Positions over time for Example 1

0 0.5 1 1.5 2 2.5 3
-8

-6

-4

-2

0

2

4

6

8

Time (t)

ve
l (

t)

Velocities over Time for Example 1 (min. time, no constraints; x(0) = 0, x(tf) = 10)

u(t)
v(t)
w(t)

Figure 12. Velocities over time for Example 1

The minimum time required is

min[] 2.6905fJ t= = .

 43

Figure 13 depicts the four control variable values throughout the flight time

span. In the control variable plots for all examples in this chapter, the following

substitutions apply:

1 latU δ=

2 lonU δ=

3 colU δ=

4 pedU δ= .

0 0.5 1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (t)

U
(t)

Control Variable Values over Time for Example 1 (min. time, no constraints; x(0) = 0, x(tf) = 10)

U1(t)
U2(t)
U3(t)
U4(t)

Figure 13. Control variable values over time for Example 1

The solution value and the position plots in Figure 11 seem to hint that our

solution is valid and quite possibly a true optimal solution to Example 1.

However, the velocity and control variable plots show some unexpected

inconsistencies that contradict the Exit Code from the program output (which

suggests that the solution is truly optimal). The Exit Code, 1, as defined in the

algorithm’s user guide, tells us that the simulation has produced an optimal value

for the performance measure [16]. Figure 12 shows an unexpected range in

velocities in the z direction—there should be very little velocity in the y or z

 44

direction to fly from 0 to 10 in only the x direction. Also, Figure 13 demonstrates

high levels of instability in the control variable values near 0t and ft . These

observations from the simulation results lead us to believe that the trajectory

does not obey the dynamical rules of the system. This issue will be discussed

later in this section.

For Example 2, 12 of the state variables have fixed boundary conditions at

ft ; they are annotated in the vector equation

10
10
10
0
0
0
0
0
0
0
0
0

f

f

f

x

y

z

f

f

f

f

f

f

f

f

f

p

p

p

u

v

w

q

r

s

θ

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟Φ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟Ψ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

.

Since, again, there are no obstacles involved, the expectation is that the

solution should be a relatively straight flight path in the xy-direction with a smooth

acceleration for the first half of the flight followed by a smooth deceleration for the

second half in order to return to a u and v value of 0 at ft . One would expect a

similar position and velocity curve in the x and y directions. Figures 14 and 15

show that the actual solution provided by the algorithm adheres closely to our

predictions.

 45

0 0.5 1 1.5 2 2.5 3
-15

-10

-5

0

5

10

15

Time (t)

p(
t)

Positions over Time for Example 2 (min. time, no constraints; x(0),y(0) = (0,0), x(tf),y(tf) = (10,10)

p(x)
p(y)
p(z)

Figure 14. Positions over time for Example 2

0 0.5 1 1.5 2 2.5 3
-10

-8

-6

-4

-2

0

2

4

6

8

Time (t)

ve
l (

t)

Velocities over Time for Example 2 (min. time, no constraints; x(0),y(0) = (0,0), x(tf),y(tf) = (10,10)

u(t)
v(t)
w(t)

Figure 15. Velocities over time for Example 2

The minimum time required is

min[] 2.7255fJ t= = .

 46

Figure 16 depicts the four control variable values throughout the flight time

span.

0 0.5 1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (t)

U
(t)

Control Variable Values over Time for Example 2 (min. time, no constraints; x(0),y(0) = (0,0), x(tf),y(tf) = (10,10)

U1(t)
U2(t)
U3(t)
U4(t)

Figure 16. Control variable values over time for Example 2

The solution value, the position plot in Figure 14, and the velocity plot in

Figure 15 (in the x and y directions) all seem to hint that our solution is valid and

quite possibly a true optimal solution to Example 2. However, the velocity in the

z direction and control variable plots show some unexpected inconsistencies that

help to explain the Exit Code from the program output (which suggests that the

solution is not optimal). Example 2 had a different Exit Code output from

Example 1 (Exit Code 41) which, according to the user’s guide, means that our

solution is nearly optimal but encounters numerical difficulties when the sub-

optimal solution cannot be improved [16]. This is apparent from the simulation

run times: 10 to 15 seconds for Exit Code 1 but 400 to 1300 seconds for Exit

Code 41. Similar to Example 1, Figure 15 shows an unexpected range in

velocities in the z direction—there should be very little velocity in the z direction

 47

to fly from 0 to 10 in the x and y directions—and Figure 16 demonstrates high

levels of instability in the control variable values near 0t and ft which could

directly influence the optimality of the solution.

For Example 3, 12 of the state variables have fixed boundary conditions at

ft ; they are annotated in the vector equation

50
0
10
0
0
0
0
0
0
0
0
0

f

f

f

x

y

z

f

f

f

f

f

f

f

f

f

p

p

p

u

v

w

q

r

s

θ

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟Φ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟Ψ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

.

Similar to Example 1, the UAV should fly a relatively straight path in the x-

direction with a smooth acceleration for the first half of the flight followed by a

smooth deceleration for the second half in order to return to a u and v value of 0

at ft . As shown in Figure 17, the actual solution provided by the algorithm

adheres closely to our predictions. However, Figure 18 shows unexpected

changes in velocity in both the y and z directions.

 48

0 1 2 3 4 5 6
-20

-10

0

10

20

30

40

50

Time (t)

p(
t)

Position over Time for Example 3 (min. time, no constraints; x(0) = 0, x(tf) = 50)

p(x)
p(y)
p(z)

Figure 17. Positions over time for Example 3

0 1 2 3 4 5 6

-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (t)

ve
l (

t)

Velocities over Time for Example 3 (min. time, no constraints; x(0) = 0, x(tf) = 50)

u(t)
v(t)
w(t)

Figure 18. Velocities over time for Example 3

Figures 17 and 18 clearly do not match up for their y and z components.

Based on Figure 18, there should be substantial position changes in all three

directions in Figure 17. This is not the case; however, the simulation achieves an

Exit Code 1 value that implies the following is an optimal solution [16]:

 49

min[] 5.2311fJ t= = .

However, the plot discrepancies suggest an issue with the non-linear UAV model

portion of the code. Figure 19 demonstrates similar endpoint instability for the

control variable as were seen in Examples 1 and 2; however, the instability is not

nearly as drastic as in the first two examples.

0 1 2 3 4 5 6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (t)

U
(t)

Control Variable Values over Time for Example 3 (min. time, no constraints; x(0) = 0, x(tf) = 50)

U1(t)
U2(t)
U3(t)
U4(t)

Figure 19. Control variable values over time for Example 3

For Example 4,12 of the state variables have fixed boundary conditions at

ft ; they are annotated in the vector equation

 50

50
50
10
0
0
0
0
0
0
0
0
0

f

f

f

x

y

z

f

f

f

f

f

f

f

f

f

p

p

p

u

v

w

q

r

s

θ

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟Φ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟Ψ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

.

Since, again, there are no obstacles involved, the expectation is that the

solution should be a relatively straight flight path in the xy-direction with a smooth

acceleration for the first half of the flight followed by a smooth deceleration for the

second half in order to return to a u and v value of 0 at ft . Just as in Example 2,

one would expect a similar position and velocity curve in the x and y directions.

Figures 20 and 21 show that the actual solution provided by the algorithm

adheres closely to our predictions.

 51

0 1 2 3 4 5 6 7
-20

-10

0

10

20

30

40

50

60

Time (t)

p(
t)

Positions over Time for Example 4 (min. time, no constraints; x(0),y(0) = (0,0), x(tf),y(tf) = (50,50)

p(x)
p(y)
p(z)

Figure 20. Positions over time for Example 4

0 1 2 3 4 5 6 7

-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (t)

ve
l (

t)

Velocities over Time for Example 4 (min. time, no constraints; x(0),y(0) = (0,0), x(tf),y(tf) = (50,50)

u(t)
v(t)
w(t)

Figure 21. Velocities over time for Example 4

The minimum time required is

min[] 6.3853fJ t= = .

 52

Figure 22 depicts the four control variable values throughout the flight time

span.

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (t)

U
(t)

Control Variable Values over Time for Example 4 (min. time, no constraints; x(0),y(0) = (0,0), x(tf),y(tf) = (50,50)

U1(t)
U2(t)
U3(t)
U4(t)

Figure 22. Control variable values over time for Example 4

Just as in Example 2, the solution value, the position plot in Figure 20, and

the velocity plot in Figure 21 (in the x direction) all seem to hint that our solution

is valid and quite possibly a true optimal solution to Example 4. However, the

velocity in the y and z directions and control variable plots show some

unexpected inconsistencies that help to explain the Exit Code of 41 from the

program output (which, just as in Example 2, suggests that the solution is not

optimal) [16]. The inconsistencies between the position and velocity plots are

very similar to those in Example 3. The control variable values in Figure 22 show

that the endpoint instability is not nearly as drastic as in Examples 1 and 2 but

similar to that shown in Example 3. It seems that lengthening that path tends to

smooth the control variable variation to some degree.

 The previous four simple examples have demonstrated that the meshing

of the nonlinear UAV model and the optimization algorithm codes is functional

 53

and effectively simulates a three dimensional trajectory while outputting an

optimal or near optimal solution for minimal flight time for several different sets of

initial and final conditions. However, there are several issues that must be

worked out in the future. The inconsistency between the path and velocity

trajectories implies that discrepancies exist when the UAV model is integrated

with the optimal control software package. It is a known fact that computational

optimal control requires higher accuracy than what is needed in the integration of

ODEs. As recently as two weeks ago, the UAV Laboratory of the National

University of Singapore developed a new model of the same UAV system.

According to their analysis and simulations, the accuracy, when comparing to

experimentation data, is much higher then the old model that is being used in our

program. We are advised to use the new model in all simulations. The next step

of research is to integrate the new model into the package developed in this

thesis to achieve improved simulation results. In addition, various numbers of

nodes and scenarios are to be numerically tested and analyzed.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

V. CONCLUSIONS AND FUTURE RESEARCH

A. CONCLUSIONS

This thesis project has been a very interesting look into the value of

numerical methods for solving complex problems. There are several findings,

some positive and some negative, that have impacted the results and,

consequently, have set the ground work for a plethora of future research.

First, and foremost, the meshing of two models from two different software

packages into one set of optimization codes was effective and produced optimal

results for several simple examples. The organization of the optimization codes

into five separate user input file—one for the performance measure, one to

manage the system of dynamic and control equations, one to manage the

constraints, one to manage the initial and final conditions of the equation system,

and one main code to run the algorithm—proved very useful in segregating and

resolving errors during the early coding phases. Also, this organization of the

codes made it quite simple to set up new examples for analysis.

Interestingly, the optimization code is very sensitive to bounds placed on

the variables. It was an obvious assumption that bounds too restrictive in nature

would make the problem infeasible. As a result, the program cannot calculate an

optimal solution. However, if the range between the upper and lower bound is

too large, it may take a long time for the program to converge. In worse cases,

the program may diverge. This sensitivity forces the user to carefully select the

bounds and continue refining them, in some cases, to allow the program to run

successfully.

Since some examples resulted in an optimal solution and some did not, it

seems logical that there are some issues with both models that need to be

worked out in order to make the optimization algorithm and nonlinear model

operate in harmony. Since the non-linear model is not originally designed for

 56

optimization, this is a sensible conclusion. Some of the constant values that

create an ideal environment for flight simulation may not necessarily do so for

optimization of a flight trajectory. The fact that it works in certain cases is a sign

that the nonlinear model should not have to be altered much to operate much

more effectively within the optimization algorithm for additional simulations.

Another disparity that hints toward non-conformity within the nonlinear

UAV model is the issue of disagreement between one or more of the velocity

components over time as compared to their respective position components.

The fact that, in some cases, the optimization algorithm outputs an Exit Code 1

(an optimal solution output) while the plots do not make sense, hints that there is

a discrepancy when the UAV model is integrated with the optimal control

program. These inconsistencies must be adjusted before one can simulate and

optimize more complex trajectories.

The final finding, which would make the examples in this thesis very

difficult to transition to real-life flight simulations, is the erratic nature of the

control variable values, especially near the initial and final time steps. It seems

that the actual helicopter UAV would fly in a very unstable fashion with the

plotted control variable inputs. Smoothing these input values would make the

model a more realistic feat for actual test flight trajectory analysis.

Overall, this project was an interesting and enjoyable research experience

where I was able to learn a great deal about a subject of which I previously knew

almost nothing about. The meshing of two codes into one functional optimization

algorithm with the ability to simulate an extremely complex flight trajectory and

output an optimal solution was a great success, and I look forward to pursuing

future endeavors on this project with my advisor.

 57

B. FUTURE RESEARCH

There is a tremendous amount work that can be done to further the

research in this thesis, and I plan on pursuing some of this work with Dr. Kang in

the future. Some future endeavors include the following:

• Working with the recently improved UAV model to get it to conform

better to the optimization algorithm

• Applying the optimization algorithm with this particular helicopter

UAV to more complex flight trajectories such as collision avoidance

in obstacle dense environment

• Optimizing other performance measures

• Applying the same optimization algorithm to other UAV types and

actual helicopters.

The modeling of these scenarios could prove invaluable to the United States

Military’s ability to maximize the effectiveness of limited UAV resources in

combat zones and could eventually model trajectories minimizing the risk to

pilots and aircraft for helicopters of different size and purpose.

 Improving both the UAV model and the optimization algorithm will enable

the program to calculate solutions for more complex trajectory simulations. For

example, a user could add obstacles to the UAV’s path, which, up to this point,

we have not been able to code effectively. Also, one could track a path

(potentially a hostile person or vehicle on the ground) with minimum variance

from that path. This model would be incredibly useful in urban environments. In

addition to minimizing, a user could opt to try to maximize a UAV’s capability,

such as the number targets or amount of ground area observed within a given

flight time window. In the examples for this thesis, we minimized the flight time,

but additional parameters could be added to the model to minimize fuel

consumption or flight cost. These are just a few examples of more complex

trajectories with alternate performance measures for realistic UAV operations.

 58

 Trajectory optimization for helicopter UAVs definitely has real-world

applications, which means many more ways to continue building on this project.

Hopefully, these applications will provide the military with plausible options for

maximizing effectiveness and minimizing risk and cost on the future battlefield.

 59

LIST OF REFERENCES

[1] M. Shanmugavel, A. Tsourdos, R. Zbikowski, and B. A. White, “3D Dubins
Sets Based Coordinated Path Planning for Swarms of UAVs,” American
Institute of Aeronautics and Astronautics, August 2006.

[2] U. Zengin, and A. Dogan, “Probabilistic Trajectory Planning for UAVs in
Dynamic Environments,” American Institute of Aeronautics and
Astronautics, September 2004.

[3] M. Hurni, “An Information-centric Approach to Autonomous Trajectory
Planning Utilizing Optimal Control Techniques,” Dissertation, Department
of Mechanical Engineering, Naval Postgraduate School, September 2009.

[4] J. Yang, Z. Qu, J. Wang, K. L. Conrad, and R. A. Hull, “Real-time
Obstacles Avoidance for Vehicles in the Urban Grand Challenge,” Journal
of Aerospace Computing, Information, and Communication, vol. 4,
December 2007.

[5] G. Cai, B. M. Chen, T. H. Lee, and K. Y. Lum, “Comprehensive Nonlinear
Modeling of an Unmanned Aerial Vehicle Helicopter,” Journal of the
American Helicopter Society, December 2009.

[6] E. R. Pinch, Optimal Control and the Calculus of Variations, Oxford
University Press, 1993.

[7] W. Kang, “Rate of Convergence for a Legendre Pseudospectral Optimal
Control of Feedback Linearizable Systems,” Journal of Control Theory
Applications, vol. 7, no. 1, 2009, pp. 123–137.

[8] J. T. Betts, “Practical Methods for Optimal Control Using Nonlinear
Programming,” SIAM, 2001.

[9] J. T. Betts, “Survey of Numerical Methods for Trajectory Optimization,”

Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, 1998, pp.
193–207.

[10] E. Polak, “Optimization: Algorithms and Consistent Approximations,”

Springer-Verlag, Heidelberg, 1997.

[11] G. Elnagar and M. A. Kazemi, “Pseudospectral Chebyshev Optimal

Control of Constrained Nonlinear Dynamical Systems,” Computational
Optimization and Applications, 1998, pp. 195–217.

 60

[12] F. Fahroo and I. M. Ross, “Costate Estimation by a Legendre
Pseudospectral Method,” Proceedings of the AIAA Guidance, Navigation,
and Control Conference, Boston, MA, 10–12 August 1998.

[13] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, “Spectral

Method in Fluid Dynamics,” New York: Springer–Verlag, 1998.

[14] Q. Gong, W. Kang, and I. M. Ross, “A Pseudospectral Method for the

Optimal Control of Constrained Feedback Linearizable Systems,” IEEE
Trans. Automat. Contr., vol. 51, no. 7, 2006, pp. 1115–1129.

[15] W. Kang, Q. Gong, and I. M Ross, “On the Convergence of Nonlinear

Optimal Control Using Pseudospectral Methods for Feedback Linearizable
Systems,” International Journal of Robust and Nonlinear Control, vol. 17,
2007, pp. 1251–1277.

[16] P. E. Gill, W. Murray, and M. A. Saunders, “User’s Guide for SNOPT

Version 7: Software for Large-Scale Nonlinear Programming,” February
2006.

 61

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Wei Kang
 Department of Applied Mathematics

Naval Postgraduate School
Monterey, California

4. Professor Hong Zhou
 Department of Applied Mathematics

Naval Postgraduate School
Monterey, California

5. Professor Carlos Borges
 Department of Applied Mathematics

Naval Postgraduate School
Monterey, California

6. COL Michael Phillips
 Department of Mathematical Sciences
 United States Military Academy

West Point, New York

7. MAJ Benjamin Gatzke
 Department of Mathematical Sciences
 United States Military Academy

West Point, New York

